Papers
Topics
Authors
Recent
2000 character limit reached

Maximum-likelihood fits to histograms for improved parameter estimation

Published 19 Dec 2013 in physics.data-an | (1312.5622v1)

Abstract: Straightforward methods for adapting the familiar chi2 statistic to histograms of discrete events and other Poisson distributed data generally yield biased estimates of the parameters of a model. The bias can be important even when the total number of events is large. For the case of estimating a microcalorimeter's energy resolution at 6 keV from the observed shape of the Mn K-alpha fluorescence spectrum, a poor choice of chi2 can lead to biases of at least 10% in the estimated resolution when up to thousands of photons are observed. The best remedy is a Poisson maximum-likelihood fit, through a simple modification of the standard Levenberg-Marquardt algorithm for chi2 minimization. Where the modification is not possible, another approach allows iterative approximation of the maximum-likelihood fit.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.