2000 character limit reached
Metastability for parabolic equations with drift: part 1 (1312.5504v1)
Published 19 Dec 2013 in math.AP
Abstract: We provide a self-contained analysis, based entirely on pde methods, of the exponentially long time behavior of solutions to linear uniformly parabolic equations which are small perturbations of a transport equation with vector field having a globally stable point. We show that the solutions converge to a constant, which is either the initial value at the stable point or the boundary value at the minimum of the associated quasi-potential. This work extends previous results of Freidlin and Wentzell and Freidlin and Koralov and applies also to semilinear elliptic pde.