Exponential Decay Results for Semilinear Parabolic PDE with $C^0$ Potentials: A "Mean Value" Approach
Abstract: The asymptotic behavior of some semilinear parabolic PDEs is analyzed by means of a "mean value" property. This property allows us to determine, by means of appropriate {\em{a priori}} estimates, some exponential decay results for suitable global solutions. We also apply the method to investigate a well-known finite time blow-up result. An application is given to a one-dimensional semilinear parabolic PDE with boundary degeneracy. Our results shed further light onto the problem of determining initial data for which the corresponding solution is guaranteed to exponentially decay to zero or blow-up in finite time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.