Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A probabilistic approach to large time behaviour of viscosity solutions of parabolic equations with Neumann boundary conditions (1503.07703v3)

Published 26 Mar 2015 in math.PR

Abstract: This paper is devoted to the study of the large time behaviour of viscosity solutions of parabolic equations with Neumann boundary conditions. This work is the sequel of [13] in which a probabilistic method was developped to show that the solution of a parabolic semilinear PDE behaves like a linear term $\lambda T$ shifted with a function $v$, where $(v,\lambda)$ is the solution of the ergodic PDE associated to the parabolic PDE. We adapt this method in finite dimension by a penalization method in order to be able to apply an important basic coupling estimate result and with the help of a regularization procedure in order to avoid the lack of regularity of the coefficients in finite dimension. The advantage of our method is that it gives an explicit rate of convergence.

Summary

We haven't generated a summary for this paper yet.