Limit theory for the Gilbert graph (1312.4861v2)
Abstract: For a given homogeneous Poisson point process in $\mathbb{R}d$ two points are connected by an edge if their distance is bounded by a prescribed distance parameter. The behaviour of the resulting random graph, the Gilbert graph or random geometric graph, is investigated as the intensity of the Poisson point process is increased and the distance parameter goes to zero. The asymptotic expectation and covariance structure of a class of length-power functionals are computed. Distributional limit theorems are derived that have a Gaussian, a stable or a compound Poisson limiting distribution. Finally, concentration inequalities are provided using a concentration inequality for the convex distance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.