Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Limit theory for the Gilbert graph (1312.4861v2)

Published 17 Dec 2013 in math.PR

Abstract: For a given homogeneous Poisson point process in $\mathbb{R}d$ two points are connected by an edge if their distance is bounded by a prescribed distance parameter. The behaviour of the resulting random graph, the Gilbert graph or random geometric graph, is investigated as the intensity of the Poisson point process is increased and the distance parameter goes to zero. The asymptotic expectation and covariance structure of a class of length-power functionals are computed. Distributional limit theorems are derived that have a Gaussian, a stable or a compound Poisson limiting distribution. Finally, concentration inequalities are provided using a concentration inequality for the convex distance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.