Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adaptive Stochastic Alternating Direction Method of Multipliers (1312.4564v4)

Published 16 Dec 2013 in stat.ML and cs.LG

Abstract: The Alternating Direction Method of Multipliers (ADMM) has been studied for years. The traditional ADMM algorithm needs to compute, at each iteration, an (empirical) expected loss function on all training examples, resulting in a computational complexity proportional to the number of training examples. To reduce the time complexity, stochastic ADMM algorithms were proposed to replace the expected function with a random loss function associated with one uniformly drawn example plus a Bregman divergence. The Bregman divergence, however, is derived from a simple second order proximal function, the half squared norm, which could be a suboptimal choice. In this paper, we present a new family of stochastic ADMM algorithms with optimal second order proximal functions, which produce a new family of adaptive subgradient methods. We theoretically prove that their regret bounds are as good as the bounds which could be achieved by the best proximal function that can be chosen in hindsight. Encouraging empirical results on a variety of real-world datasets confirm the effectiveness and efficiency of the proposed algorithms.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.