Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Mayer-Cluster Expansion of Instanton Partition Functions and Thermodynamic Bethe Ansatz (1312.4537v3)

Published 16 Dec 2013 in hep-th, cond-mat.stat-mech, math-ph, and math.MP

Abstract: In arXiv:0908.4052, Nekrasov and Shatashvili pointed out that the N=2 instanton partition function in a special limit of the Omega-deformation parameters is characterized by certain thermodynamic Bethe ansatz (TBA) like equations. In this work we present an explicit derivation of this fact as well as generalizations to quiver gauge theories. To do so we combine various techniques like the iterated Mayer expansion, the method of expansion by regions, and the path integral tricks for non-perturbative summation. The TBA equations derived entirely within gauge theory have been proposed to encode the spectrum of a large class of quantum integrable systems. We hope that the derivation presented in this paper elucidates further this completely new point of view on the origin, as well as on the structure, of TBA equations in integrable models.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.