Papers
Topics
Authors
Recent
Search
2000 character limit reached

On mesoscopic equilibrium for linear statistics in Dyson's Brownian Motion

Published 16 Dec 2013 in math-ph, math.MP, and math.PR | (1312.4295v1)

Abstract: In this paper we study mesoscopic fluctuations for Dyson's Brownian motion with $\beta=2$. Dyson showed that the Gaussian Unitary Ensemble (GUE) is the invariant measure for this stochastic evolution and conjectured that, when starting from a generic configuration of initial points, the time that is needed for the GUE statistics to become dominant depends on the scale we look at: The microscopic correlations arrive at the equilibrium regime sooner than the macrosopic correlations. In this paper we investigate the transition on the intermediate, i.e. mesoscopic, scales. The time scales that we consider are such that the system is already in microscopic equilibrium (sine-universality for the local correlations), but we have not yet reached equilibrium at the macrosopic scale. We describe the transition to equilibrium on all mesoscopic scales by means of Central Limit Theorems for linear statistics with sufficiently smooth test functions. We consider two situations: deterministic initial points and randomly chosen initial points. In the random situation, we obtain a transition from the classical Central Limit Theorem for independent random variables to the one for the GUE.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.