Characterizing the dual mixed volume via additive functionals (1312.4072v1)
Abstract: Integral representations are obtained of positive additive functionals on finite products of the space of continuous functions (or of bounded Borel functions) on a compact Hausdorff space. These are shown to yield characterizations of the dual mixed volume, the fundamental concept in the dual Brunn-Minkowski theory. The characterizations are shown to be best possible in the sense that none of the assumptions can be omitted. The results obtained are in the spirit of a similar characterization of the mixed volume in the classical Brunn-Minkowski theory, obtained recently by Milman and Schneider, but the methods employed are completely different.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.