Papers
Topics
Authors
Recent
2000 character limit reached

Fourier transforms of Gibbs measures for the Gauss map (1312.3619v3)

Published 12 Dec 2013 in math.DS, math.CA, and math.NT

Abstract: We investigate under which conditions a given invariant measure $\mu$ for the dynamical system defined by the Gauss map $x \mapsto 1/x \mod 1$ is a Rajchman measure with polynomially decaying Fourier transform $$|\widehat{\mu}(\xi)| = O(|\xi|{-\eta}), \quad \text{as } |\xi| \to \infty.$$ We show that this property holds for any Gibbs measure $\mu$ of Hausdorff dimension greater than $1/2$ with a natural large deviation assumption on the Gibbs potential. In particular, we obtain the result for the Hausdorff measure and all Gibbs measures of dimension greater than $1/2$ on badly approximable numbers, which extends the constructions of Kaufman and Queff\'elec-Ramar\'e. Our main result implies that the Fourier-Stieltjes coefficients of the Minkowski's question mark function decay to $0$ polynomially answering a question of Salem from 1943. As an application of the Davenport-Erd\H{o}s-LeVeque criterion we obtain an equidistribution theorem for Gibbs measures, which extends in part a recent result by Hochman-Shmerkin. Our proofs are based on exploiting the nonlinear and number theoretic nature of the Gauss map and large deviation theory for Hausdorff dimension and Lyapunov exponents.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.