Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Characterize graphs with rainbow connection number $m-2$ and $m-3$ (1312.3068v1)

Published 11 Dec 2013 in math.CO

Abstract: A path in an edge-colored graph, where adjacent edges may be colored the same, is a rainbow path if no two edges of it are colored the same. A nontrivial connected graph $G$ is rainbow connected if there is a rainbow path connecting any two vertices, and the rainbow connection number of $G$, denoted by $rc(G)$, is the minimum number of colors that are needed in order to make $G$ rainbow connected. Chartrand et al. obtained that $G$ is a tree if and only if $rc(G)=m$, and it is easy to see that $G$ is not a tree if and only if $rc(G)\leq m-2$, where $m$ is the number of edge of $G$. So there is an interesting problem: Characterize the graphs $G$ with $rc(G)=m-2$. In this paper, we settle down this problem. Furthermore, we also characterize the graphs $G$ with $rc(G)=m-3$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.