Coxeter's frieze patterns and discretization of the Virasoro orbit (1312.3021v2)
Abstract: We show that the space of classical Coxeter's frieze patterns can be viewed as a discrete version of a coadjoint orbit of the Virasoro algebra. The canonical (cluster) (pre)symplectic form on the space of frieze patterns is a discretization of the Kirillov symplectic form. We relate a continuous version of frieze patterns to conformal metrics of constant curvature in dimension 2.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.