Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Protocol for Generating Random Elements with their Probabilities (1312.2483v2)

Published 9 Dec 2013 in cs.CC and cs.CR

Abstract: We give an AM protocol that allows the verifier to sample elements x from a probability distribution P, which is held by the prover. If the prover is honest, the verifier outputs (x, P(x)) with probability close to P(x). In case the prover is dishonest, one may hope for the following guarantee: if the verifier outputs (x, p), then the probability that the verifier outputs x is close to p. Simple examples show that this cannot be achieved. Instead, we show that the following weaker condition holds (in a well defined sense) on average: If (x, p) is output, then p is an upper bound on the probability that x is output. Our protocol yields a new transformation to turn interactive proofs where the verifier uses private random coins into proofs with public coins. The verifier has better running time compared to the well-known Goldwasser-Sipser transformation (STOC, 1986). For constant-round protocols, we only lose an arbitrarily small constant in soundness and completeness, while our public-coin verifier calls the private-coin verifier only once.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube