Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Subspace System Identification via Weighted Nuclear Norm Optimization

Published 7 Dec 2013 in cs.SY, cs.LG, and stat.ML | (1312.2132v1)

Abstract: Subspace identification is a classical and very well studied problem in system identification. The problem was recently posed as a convex optimization problem via the nuclear norm relaxation. Inspired by robust PCA, we extend this framework to handle outliers. The proposed framework takes the form of a convex optimization problem with an objective that trades off fit, rank and sparsity. As in robust PCA, it can be problematic to find a suitable regularization parameter. We show how the space in which a suitable parameter should be sought can be limited to a bounded open set of the two dimensional parameter space. In practice, this is very useful since it restricts the parameter space that is needed to be surveyed.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.