Modeling of Contact Tracing in Epidemic Populations Structured by Disease Age (1312.2120v2)
Abstract: We consider an age-structured epidemic model with two basic public health interventions: (i) identifying and isolating symptomatic cases, and (ii) tracing and quarantine of the contacts of identified infectives. The dynamics of the infected population are modeled by a nonlinear infection-age-dependent partial differential equation, which is coupled with an ordinary differential equation that describes the dynamics of the susceptible population. Theoretical results about global existence and uniqueness of positive solutions are proved. We also present two practical applications of our model: (1) we assess public health guidelines about emergency preparedness and response in the event of a smallpox bioterrorist attack; (2) we simulate the 2003 SARS outbreak in Taiwan and estimate the number of cases avoided by contact tracing. Our model can be applied as a rational basis for decision makers to guide interventions and deploy public health resources in future epidemics.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.