Papers
Topics
Authors
Recent
2000 character limit reached

On the limit of extreme eigenvalues of large dimensional random quaternion matrices (1312.1433v2)

Published 5 Dec 2013 in math.PR

Abstract: Since E.P.Wigner (1958) established his famous semicircle law, lots of attention has been paid by physicists, probabilists and statisticians to study the asymptotic properties of the largest eigenvalues for random matrices. Bai and Yin (1988) obtained the necessary and sufficient conditions for the strong convergence of the extreme eigenvalues of a Wigner matrix. In this paper, we consider the case of quaternion self-dual Hermitian matrices. We prove the necessary and sufficient conditions for the strong convergence of extreme eigenvalues of quaternion self-dual Hermitian matrices corresponding to the Wigner case.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.