Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Conic geometric optimisation on the manifold of positive definite matrices (1312.1039v3)

Published 4 Dec 2013 in math.FA

Abstract: We develop \emph{geometric optimisation} on the manifold of Hermitian positive definite (HPD) matrices. In particular, we consider optimising two types of cost functions: (i) geodesically convex (g-convex); and (ii) log-nonexpansive (LN). G-convex functions are nonconvex in the usual euclidean sense, but convex along the manifold and thus allow global optimisation. LN functions may fail to be even g-convex, but still remain globally optimisable due to their special structure. We develop theoretical tools to recognise and generate g-convex functions as well as cone theoretic fixed-point optimisation algorithms. We illustrate our techniques by applying them to maximum-likelihood parameter estimation for elliptically contoured distributions (a rich class that substantially generalises the multivariate normal distribution). We compare our fixed-point algorithms with sophisticated manifold optimisation methods and obtain notable speedups.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.