Conic geometric optimisation on the manifold of positive definite matrices (1312.1039v3)
Abstract: We develop \emph{geometric optimisation} on the manifold of Hermitian positive definite (HPD) matrices. In particular, we consider optimising two types of cost functions: (i) geodesically convex (g-convex); and (ii) log-nonexpansive (LN). G-convex functions are nonconvex in the usual euclidean sense, but convex along the manifold and thus allow global optimisation. LN functions may fail to be even g-convex, but still remain globally optimisable due to their special structure. We develop theoretical tools to recognise and generate g-convex functions as well as cone theoretic fixed-point optimisation algorithms. We illustrate our techniques by applying them to maximum-likelihood parameter estimation for elliptically contoured distributions (a rich class that substantially generalises the multivariate normal distribution). We compare our fixed-point algorithms with sophisticated manifold optimisation methods and obtain notable speedups.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.