Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A new approach to stochastic evolution equations with adapted drift (1312.0889v2)

Published 3 Dec 2013 in math.PR, math.AP, and math.FA

Abstract: In this paper we develop a new approach to stochastic evolution equations with an unbounded drift $A$ which is dependent on time and the underlying probability space in an adapted way. It is well-known that the semigroup approach to equations with random drift leads to adaptedness problems for the stochastic convolution term. In this paper we give a new representation formula for the stochastic convolution which avoids integration of nonadapted processes. Here we mainly consider the parabolic setting. We establish connections with other solution concepts such as weak solutions. The usual parabolic regularity properties are derived and we show that the new approach can be applied in the study of semilinear problems with random drift. At the end of the paper the results are illustrated with two examples of stochastic heat equations with random drift.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.