Papers
Topics
Authors
Recent
2000 character limit reached

Quantitative studies of the homogeneous Bethe-Salpeter Equation in Minkowski space (1312.0521v1)

Published 2 Dec 2013 in hep-ph, cond-mat.mes-hall, cond-mat.str-el, and nucl-th

Abstract: The Bethe-Salpeter Equation for a bound system, composed by two massive scalars exchanging a massive scalar, is quantitatively investigated in ladder approximation, within the Nakanishi integral representation approach. For the S-wave case, numerical solutions with a form inspired by the Nakanishi integral representation, have been calculated. The needed Nakanishi weight functions have been evaluated by solving two different eigenequations, obtained directly from the Bethe-Salpeter equation applying the Light-Front projection technique. A remarkable agreement, in particular for the eigenvalues, has been achieved, numerically confirming that the Nakanishi uniqueness theorem for the weight functions, demonstrated in the context of the perturbative analysis of the multi-leg transition amplitudes and playing a basic role in suggesting one of the two adopted eigenequations, can be extended to a non perturbative realm. The detailed, quantitative studies are completed by presenting both probabilities and Light-Front momentum distributions for the valence component of the bound state.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.