Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Digitize Your Body and Action in 3-D at Over 10 FPS: Real Time Dense Voxel Reconstruction and Marker-less Motion Tracking via GPU Acceleration (1311.6811v1)

Published 26 Nov 2013 in cs.GR

Abstract: In this paper, we present an approach to reconstruct 3-D human motion from multi-cameras and track human skeleton using the reconstructed human 3-D point (voxel) cloud. We use an improved and more robust algorithm, probabilistic shape from silhouette to reconstruct human voxel. In addition, the annealed particle filter is applied for tracking, where the measurement is computed using the reprojection of reconstructed voxel. We use two different ways to accelerate the approach. For the CPU only acceleration, we leverage Intel TBB to speed up the hot spot of the computational overhead and reached an accelerating ratio of 3.5 on a 4-core CPU. Moreover, we implement an intensively paralleled version via GPU acceleration without TBB. Taking account all data transfer and computing time, the GPU version is about 400 times faster than the original CPU implementation, leading the approach to run at a real-time speed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.