Regularization after retention in ultrahigh dimensional linear regression models (1311.5625v3)
Abstract: In ultrahigh dimensional setting, independence screening has been both theoretically and empirically proved a useful variable selection framework with low computation cost. In this work, we propose a two-step framework by using marginal information in a different perspective from independence screening. In particular, we retain significant variables rather than screening out irrelevant ones. The new method is shown to be model selection consistent in the ultrahigh dimensional linear regression model. To improve the finite sample performance, we then introduce a three-step version and characterize its asymptotic behavior. Simulations and real data analysis show advantages of our method over independence screening and its iterative variants in certain regimes.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.