Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 191 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the Nonuniform FFT (1311.4120v2)

Published 17 Nov 2013 in math.NA

Abstract: We present a fast and accurate algorithm for the evaluation of nonlocal (long-range) Coulomb and dipole-dipole interactions in free space. The governing potential is simply the convolution of an interaction kernel $U(\bx)$ and a density function $\rho(\bx)=|\psi(\bx)|2$, for some complex-valued wave function $\psi(\bx)$, permitting the formal use of Fourier methods. These are hampered by the fact that the Fourier transform of the interaction kernel $\widehat{U}(\bk)$ has a singularity at the origin $\bk={\bf 0}$ in Fourier (phase) space. Thus, accuracy is lost when using a uniform Cartesian grid in $\bk$ which would otherwise permit the use of the FFT for evaluating the convolution. Here, we make use of a high-order discretization of the Fourier integral, accelerated by the nonuniform fast Fourier transform (NUFFT). By adopting spherical and polar phase-space discretizations in three and two dimensions, respectively, the singularity in $\hat{U}(\bk)$ at the origin is canceled, so that only a modest number of degrees of freedom are required to evaluate the Fourier integral, assuming that the density function $\rho(\bx)$ is smooth and decays sufficiently fast as $\bx \rightarrow \infty$. More precisely, the calculation requires $O(N\log N)$ operations, where $N$ is the total number of discretization points in the computational domain. Numerical examples are presented to demonstrate the performance of the algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.