Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the Nonuniform FFT (1311.4120v2)
Abstract: We present a fast and accurate algorithm for the evaluation of nonlocal (long-range) Coulomb and dipole-dipole interactions in free space. The governing potential is simply the convolution of an interaction kernel $U(\bx)$ and a density function $\rho(\bx)=|\psi(\bx)|2$, for some complex-valued wave function $\psi(\bx)$, permitting the formal use of Fourier methods. These are hampered by the fact that the Fourier transform of the interaction kernel $\widehat{U}(\bk)$ has a singularity at the origin $\bk={\bf 0}$ in Fourier (phase) space. Thus, accuracy is lost when using a uniform Cartesian grid in $\bk$ which would otherwise permit the use of the FFT for evaluating the convolution. Here, we make use of a high-order discretization of the Fourier integral, accelerated by the nonuniform fast Fourier transform (NUFFT). By adopting spherical and polar phase-space discretizations in three and two dimensions, respectively, the singularity in $\hat{U}(\bk)$ at the origin is canceled, so that only a modest number of degrees of freedom are required to evaluate the Fourier integral, assuming that the density function $\rho(\bx)$ is smooth and decays sufficiently fast as $\bx \rightarrow \infty$. More precisely, the calculation requires $O(N\log N)$ operations, where $N$ is the total number of discretization points in the computational domain. Numerical examples are presented to demonstrate the performance of the algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.