Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Integral relations for solutions of confluent Heun equations (1311.3703v3)

Published 15 Nov 2013 in math-ph and math.MP

Abstract: Firstly, we construct kernels of integral relations among solutions of the confluent Heun equation (CHE) and its limit, the reduced CHE (RCHE). In both cases we generate additional kernels by systematically applying substitutions of variables. Secondly, we establish integral relations between known solutions of the CHE that are power series and solutions that are series of special functions; and similarly for solutions of the RCHE. Thirdly, by using one of the integral relations as an integral transformation we obtain a new series solution of the spheroidal wave equation. From this solution we construct new solutions of the general CHE, and show that these are suitable for solving the radial part of the two-center problem in quantum mechanics. Finally, by applying a limiting process to kernels for the CHEs we obtain kernels for {two} double-confluent Heun equations. As a result, we deal with kernels of four equations of the Heun family, each equation presenting a distinct structure of singularities. In addition, we find that the known kernels for the Mathieu equation are special instances of kernels of the RCHE.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.