Morphisms between complete Riemannian pseudogroups (1311.3511v1)
Abstract: We introduce the concept of morphism of pseudogroups generalizing the \'etal\'e morphisms of Haefliger. With our definition, any continuous foliated map induces a morphism between the corresponding holonomy pseudogroups. The main theorem states that any morphism between complete Riemannian pseudogroups is complete, has a closure and its maps are \cinf\ along the orbit closures. Here, completeness and closure are versions for morphisms of concepts introduced by Haefliger for pseudogroups. This result is applied to approximate foliated maps by smooth ones in the case of transversely complete Riemannian foliations, yielding the foliated homotopy invariance of their spectral sequence. This generalizes the topological invariance of their basic cohomology, shown by El Kacimi-Nicolau. A different proof of the spectral sequence invariance was also given by the second author.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.