Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Grothendieck ring of varieties (1311.1736v2)

Published 7 Nov 2013 in math.AG

Abstract: Let $\operatorname{K}_0(\operatorname{Var}_k)$ denote the Grothendieck ring of $k$-varieties over an algebraically closed field $k$. Larsen and Lunts asked if two $k$-varieties having the same class in $\operatorname{K}_0 (\operatorname{Var}_k)$ are piecewise isomorphic. Gromov asked if a birational self-map of a $k$-variety can be extended to a piecewise automorphism. We show that these two questions are equivalent over any algebraically closed field. If these two questions admit a positive answer, then we prove that its underlying abelian group is a free abelian group. Furthermore, if $\mathfrak B$ denotes the multiplicative monoid of birational equivalence classes of irreducible $k$-varieties then we also prove that the associated graded ring of the Grothendieck ring is the monoid ring $\mathbb Z[\mathfrak B]$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.