Papers
Topics
Authors
Recent
2000 character limit reached

Efficient time integration methods based on operator splitting and application to the Westervelt equation (1311.1224v1)

Published 5 Nov 2013 in math.NA

Abstract: Efficient time integration methods based on operator splitting are introduced for the Westervelt equation, a nonlinear damped wave equation that arises in nonlinear acoustics as mathematical model for the propagation of sound waves in high intensity ultrasound applications. For the first-order Lie-Trotter splitting method a global error estimate is deduced, confirming that the splitting method remains stable and that the nonstiff convergence order is retained in situations where the problem data are sufficiently regular. Fundamental ingredients in the stability and error analysis are regularity results for the Westervelt equation and related linear evolution equations of hyperbolic and parabolic type. Numerical examples illustrate and complement the theoretical investigations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.