Papers
Topics
Authors
Recent
Search
2000 character limit reached

Khovanov homology and the symmetry group of a knot

Published 5 Nov 2013 in math.GT | (1311.1085v4)

Abstract: We introduce an invariant of tangles in Khovanov homology by considering a natural inverse system of Khovanov homology groups. As application, we derive an invariant of strongly invertible knots; this invariant takes the form of a graded vector space that vanishes if and only if the strongly invertible knot is trivial. While closely tied to Khovanov homology -- and hence the Jones polynomial -- we observe that this new invariant detects non-amphicheirality in subtle cases where Khovanov homology fails to do so. In fact, we exhibit examples of knots that are not distinguished by Khovanov homology but, owing to the presence of a strong inversion, may be distinguished using our invariant. This work suggests a strengthened relationship between Khovanov homology and Heegaard Floer homology by way of two-fold branched covers that we formulate in a series of conjectures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.