The Gaussian-Smoothed Wigner Function and Its Application to Precision Analysis (1311.0666v1)
Abstract: We study a class of phase-space distribution functions that is generated from a Gaussian convolution of the Wigner distribution function. This class of functions represents the joint count probability in simultaneous measurements of position and momentum. We show that, using these functions, one can determine the expectation value of a certain class of operators accurately, even if measurement data performed only with imperfect detectors are available. As an illustration, we consider the eight-port homodyne detection experiment that performs simultaneous measurements of two quadrature amplitudes of a radiation field.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.