Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Universal short-time quantum critical dynamics in imaginary time (1311.0108v2)

Published 1 Nov 2013 in cond-mat.stat-mech

Abstract: We propose a scaling theory for the universal imaginary-time quantum critical dynamics for both short times and long times. We discover that there exists a universal critical initial slip related to a small initial order parameter $M_0$. In this stage, the order parameter $M$ increases with the imaginary time $\tau$ as $M\propto M_0\tau\theta$ with a universal initial slip exponent $\theta$. For the one-dimensional transverse-field Ising model, we estimate $\theta$ to be $0.373$, which is markedly distinct from its classical counterpart. Apart from the local order parameter, we also show that the entanglement entropy exhibits universal behavior in the short-time region. As the critical exponents in the early stage and in equilibrium are identical, we apply the short-time dynamics method to determine quantum critical properties. The method is generally applicable in both the Landau-Ginzburg-Wilson paradigm and topological phase transitions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.