Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hecke and Sturm bounds for Hilbert modular forms over real quadratic fields (1310.6991v1)

Published 25 Oct 2013 in math.NT

Abstract: In this article we give an analogue of Hecke and Sturm bounds for Hilbert modular forms over real quadratic fields. Let $K$ be a real quadratic field and $\Om_K$ its ring of integers. Let $\Gamma$ be a congruence subgroup of $\SL_2(\Om_K)$ and $M_{(k_1,k_2)}(\Gamma)$ the space of Hilbert modular forms of weight $(k_1,k_2)$ for $\Gamma$. The first main result is an algorithm to construct a finite set $S$, depending on $K$, $\Gamma$ and $(k_1,k_2)$, such that if the Fourier expansion coefficients of a form $G \in M_{(k_1,k_2)}(\Gamma)$ vanish on the set $S$, then $G$ is the zero form. The second result corresponds to the same statement in the Sturm case, i.e. suppose that all the Fourier coefficients of the form $G$ lie in a finite extension of $\Q$, and let $\id{p}$ be a prime ideal in such extension, whose norm is unramified in $K$; suppose furthermore that the Fourier expansion coefficients of $G$ lie in the ideal $\id{p}$ for all the elements in $S$, then they all lie in the ideal $\id{p}$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.