Strong divisibility and lcm-sequences (1310.2416v1)
Abstract: Let $R$ be a gcd-domain (for example let $R$ be a unique factorization domain), and let $(a_n){n\geqslant1}$ be a sequence of nonzero elements in $R$. We prove that $\gcd(a_n,a_m)=a{\gcd(n,m)}$ for all $n,m\geqslant1$ if and only if $$a_n=\prod\limits_{d\mid n} c_d\quad\mbox{for} \ n\geqslant1, $$ where $c_1=a_1$ and $c_n=\mbox{lcm}(a_1,a_2,\dots,a_n)/\mbox{lcm}(a_1,a_2,\dots,a_{n-1})$ for $n\geqslant2$. All equalities with gcd and lcm are determined up to units of $R$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.