Stable Commutator Length in Amalgamated Free Products (1310.2254v3)
Abstract: We show that stable commutator length is rational on free products of free Abelian groups amalgamated over $\mathbb{Z}k$, a class of groups containing the fundamental groups of all torus knot complements. We consider a geometric model for these groups and parameterize all surfaces with specified boundary mapping to this space. Using this work we provide a topological algorithm to compute stable commutator length in these groups. Further, we use the methods developed to show that in free products of cyclic groups the stable commutator length of a fixed varies quasirationally in the orders of the free factors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.