Papers
Topics
Authors
Recent
2000 character limit reached

On homological rigidity and flexibility of exact Lagrangian endocobordisms (1310.1577v5)

Published 6 Oct 2013 in math.SG

Abstract: We show that an exact Lagrangian cobordism $L\subset \mathbb R \times P \times \mathbb R$ from a Legendrian submanifold $\Lambda\subset P\times \mathbb R$ to itself satisfies $H_i(L;\mathbb F)=H_i(\Lambda;\mathbb F)$ for any field $\mathbb F$ in the case when $\Lambda$ admits a spin exact Lagrangian filling and the concatenation of any spin exact Lagrangian filling of $\Lambda$ and $L$ is also spin. The main tool used is Seidel's isomorphism in wrapped Floer homology. In contrast to that, for loose Legendrian submanifolds of $\mathbb{C}n \times \mathbb R$, we construct examples of such cobordisms whose homology groups have arbitrary high ranks. In addition, we prove that the front $Sm$-spinning construction preserves looseness, which implies certain forgetfulness properties of it.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.