Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Closed symmetric 2-differentials of the 1st kind (1310.0061v1)

Published 30 Sep 2013 in math.AG and math.CV

Abstract: A closed symmetric differential of the 1st kind is a differential that locally is the product of closed holomorphic 1-forms. We show that closed symmetric 2-differentials of the 1st kind on a projective manifold $X$ come from maps of $X$ to cyclic or dihedral quotients of Abelian varieties and that their presence implies that the fundamental group of $X$ (case of rank 2) or of the complement $X\setminus E$ of a divisor $E$ with negative properties (case of rank 1) contains subgroup of finite index with infinite abelianization. Other results include: i) the identification of the differential operator characterizing closed symmetric 2-differentials on surfaces (which provides in this case a connection to flat Riemannian metrics) and ii) projective manifolds $X$ having symmetric 2-differentials $w$ that are the product of two closed meromorphic 1-forms are irregular, in fact if $w$ is not of the 1st kind (which can happen), then $X$ has a fibration $f:X \to C$ over a curve of genus $\ge 1$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.