Papers
Topics
Authors
Recent
2000 character limit reached

Cyclic Causal Discovery from Continuous Equilibrium Data

Published 26 Sep 2013 in cs.LG, cs.AI, and stat.ML | (1309.6849v1)

Abstract: We propose a method for learning cyclic causal models from a combination of observational and interventional equilibrium data. Novel aspects of the proposed method are its ability to work with continuous data (without assuming linearity) and to deal with feedback loops. Within the context of biochemical reactions, we also propose a novel way of modeling interventions that modify the activity of compounds instead of their abundance. For computational reasons, we approximate the nonlinear causal mechanisms by (coupled) local linearizations, one for each experimental condition. We apply the method to reconstruct a cellular signaling network from the flow cytometry data measured by Sachs et al. (2005). We show that our method finds evidence in the data for feedback loops and that it gives a more accurate quantitative description of the data at comparable model complexity.

Citations (82)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.