Degenerate parabolic stochastic partial differential equations: Quasilinear case (1309.5817v2)
Abstract: In this paper, we study the Cauchy problem for a quasilinear degenerate parabolic stochastic partial differential equation driven by a cylindrical Wiener process. In particular, we adapt the notion of kinetic formulation and kinetic solution and develop a well-posedness theory that includes also an $L1$-contraction property. In comparison to the previous works of the authors concerning stochastic hyperbolic conservation laws [J. Funct. Anal. 259 (2010) 1014-1042] and semilinear degenerate parabolic SPDEs [Stochastic Process. Appl. 123 (2013) 4294-4336], the present result contains two new ingredients that provide simpler and more effective method of the proof: a generalized It^{o} formula that permits a rigorous derivation of the kinetic formulation even in the case of weak solutions of certain nondegenerate approximations and a direct proof of strong convergence of these approximations to the desired kinetic solution of the degenerate problem.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.