Overdamped limit and inverse friction expansion for the Brownian motion in an inhomogeneous medium (1309.5750v5)
Abstract: We revisit the problem of the overdamped (large friction) limit of the Brownian dynamics in an inhomogeneous medium characterized by a position-dependent friction coefficient and a multiplicative noise (local temperature) in one space dimension. Starting from the Kramers equation and analyzing it through the expansion in terms of eigenfunctions of a quantum harmonic oscillator, we derive analytically the corresponding Fokker-Planck equation in the overdamped limit. The result is fully consistent with the previous finding by Sancho, San Miguel, and D\"urr \cite{Sanc82}. Our method allows us to generalize the Brinkman's hierarchy, and thus it would be straightforward to obtain higher-order corrections in a systematic inverse friction expansion without any assumption. Our results are confirmed by numerical simulations for simple examples.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.