Papers
Topics
Authors
Recent
2000 character limit reached

Arclength parametrized Hamilton's equations for the calculation of instantons (1309.5175v1)

Published 20 Sep 2013 in cond-mat.stat-mech, math-ph, math.MP, and physics.comp-ph

Abstract: A method is presented to compute minimizers (instantons) of action functionals using arclength parametrization of Hamilton's equations. This method can be interpreted as a local variant of the geometric minimum action method (gMAM) introduced to compute minimizers of the Freidlin-Wentzell action functional that arises in the context of large deviation theory for stochastic differential equations. The method is particularly well-suited to calculate expectations dominated by noise-induced excursions from deterministically stable fixpoints. Its simplicity and computational efficiency are illustrated here using several examples: a finite-dimensional stochastic dynamical system (an Ornstein-Uhlenbeck model) and two models based on stochastic partial differential equations: the $\phi4$-model and the stochastically driven Burgers equation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.