Arclength parametrized Hamilton's equations for the calculation of instantons (1309.5175v1)
Abstract: A method is presented to compute minimizers (instantons) of action functionals using arclength parametrization of Hamilton's equations. This method can be interpreted as a local variant of the geometric minimum action method (gMAM) introduced to compute minimizers of the Freidlin-Wentzell action functional that arises in the context of large deviation theory for stochastic differential equations. The method is particularly well-suited to calculate expectations dominated by noise-induced excursions from deterministically stable fixpoints. Its simplicity and computational efficiency are illustrated here using several examples: a finite-dimensional stochastic dynamical system (an Ornstein-Uhlenbeck model) and two models based on stochastic partial differential equations: the $\phi4$-model and the stochastically driven Burgers equation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.