Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Blind Deconvolution via Maximum Kurtosis Adaptive Filtering (1309.5004v1)

Published 19 Sep 2013 in cs.CV

Abstract: In this paper, we present an algorithm for identifying a parametrically described destructive unknown system based on a non-gaussianity measure. It is known that under certain conditions the output of a linear system is more gaussian than the input. Hence, an inverse filter is searched, such that its output is minimally gaussian. We use the kurtosis as a measure of the non-gaussianity of the signal. A maximum of the kurtosis as a function of the deconvolving filter coefficients is searched. The search is done iteratively using the gradient ascent algorithm, and the coefficients at the maximum point correspond to the inverse filter coefficients. This filter may be applied to the distorted signal to obtain the original undistorted signal. While a similar approach has been used before, it was always directed at a particular kind of a signal, commonly of impulsive characteristics. In this paper a successful attempt has been made to apply the algorithm to a wider range of signals, such as to process distorted audio signals and destructed images. This innovative implementation required the revelation of a way to preprocess the distorted signal at hand. The experimental results show very good performance in terms of recovering audio signals and blurred images, both for an FIR and IIR distorting filters.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.