Papers
Topics
Authors
Recent
2000 character limit reached

The Gauss-Bonnet Formula for Harmonic Surfaces (1309.4659v2)

Published 18 Sep 2013 in math.DG

Abstract: We consider harmonic immersions in $\R{\N}$ of compact Riemann surfaces with finitely many punctures where the harmonic coordinate functions are given as real parts of meromorphic functions. We prove that such surfaces have finite total Gauss curvature. The contribution of each end is a multiple of $2\pi$, determined by the maximal pole order of the meromorphic functions. This generalizes the well known Gackstatter-Jorge-Meeks formula for minimal surfaces. The situation is complicated as the ends are generally not conformally equivalent to punctured disks, nor does the surface have limit tangent planes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.