Papers
Topics
Authors
Recent
2000 character limit reached

Spatially extended networks with singular multi-scale connectivity patterns (1309.4655v5)

Published 17 Sep 2013 in q-bio.NC and cond-mat.dis-nn

Abstract: The cortex is a very large network characterized by a complex connectivity including at least two scales: a microscopic scale at which the interconnections are non-specific and very dense, while macroscopic connectivity patterns connecting different regions of the brain at larger scale are extremely sparse. This motivates to analyze the behavior of networks with multiscale coupling, in which a neuron is connected to its $v(N)$ nearest-neighbors where $v(N)=o(N)$, and in which the probability of macroscopic connection between two neurons vanishes. These are called singular multi-scale connectivity patterns. We introduce a class of such networks and derive their continuum limit. We show convergence in law and propagation of chaos in the thermodynamic limit. The limit equation obtained is an intricate non-local McKean-Vlasov equation with delays which is universal with respect to the type of micro-circuits and macro-circuits involved.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.