Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Sparse Linear Models and Two-Stage Estimation in High-Dimensional Settings with Possibly Many Endogenous Regressors (1309.4193v1)

Published 17 Sep 2013 in math.ST and stat.TH

Abstract: This paper explores the validity of the two-stage estimation procedure for sparse linear models in high-dimensional settings with possibly many endogenous regressors. In particular, the number of endogenous regressors in the main equation and the instruments in the first-stage equations can grow with and exceed the sample size n. The analysis concerns the exact sparsity case, i.e., the maximum number of non-zero components in the vectors of parameters in the first-stage equations, k1, and the number of non-zero components in the vector of parameters in the second-stage equation, k2, are allowed to grow with n but slowly compared to n. I consider the high-dimensional version of the two-stage least square estimator where one obtains the fitted regressors from the first-stage regression by a least square estimator with l_1-regularization (the Lasso or Dantzig selector) when the first-stage regression concerns a large number of instruments relative to n, and then construct a similar estimator using these fitted regressors in the second-stage regression. The main theoretical results of this paper are non-asymptotic bounds from which I establish sufficient scaling conditions on the sample size for estimation consistency in l_2-norm and variable-selection consistency. A technical issue regarding the so-called "restricted eigenvalue (RE) condition" for estimation consistency and the "mutual incoherence (MI) condition" for selection consistency arises in the two-stage estimation from allowing the number of regressors in the main equation to exceed n and this paper provides analysis to verify these RE and MI conditions. Depending on the underlying assumptions, the upper bounds on the l_2-error and the sample size required to obtain these consistency results differ by factors involving k1 and/or k2. Simulations are conducted to gain insight on the finite sample performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.