Linear difference equations, frieze patterns and combinatorial Gale transform (1309.3880v1)
Abstract: We study the space of linear difference equations with periodic coefficients and (anti)periodic solutions. We show that this space is isomorphic to the space of tame frieze patterns and closely related to the moduli space of configurations of points in the projective space. We define the notion of combinatorial Gale transform which is a duality between periodic difference equations of different orders. We describe periodic rational maps generalizing the classical Gauss map.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.