Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bayesian Nonparametric Weighted Sampling Inference (1309.1799v4)

Published 7 Sep 2013 in stat.ME, stat.AP, and stat.CO

Abstract: It has historically been a challenge to perform Bayesian inference in a design-based survey context. The present paper develops a Bayesian model for sampling inference in the presence of inverse-probability weights. We use a hierarchical approach in which we model the distribution of the weights of the nonsampled units in the population and simultaneously include them as predictors in a nonparametric Gaussian process regression. We use simulation studies to evaluate the performance of our procedure and compare it to the classical design-based estimator. We apply our method to the Fragile Family and Child Wellbeing Study. Our studies find the Bayesian nonparametric finite population estimator to be more robust than the classical design-based estimator without loss in efficiency, which works because we induce regularization for small cells and thus this is a way of automatically smoothing the highly variable weights.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.