Papers
Topics
Authors
Recent
2000 character limit reached

Computing Lexical Contrast (1308.6300v1)

Published 28 Aug 2013 in cs.CL

Abstract: Knowing the degree of semantic contrast between words has widespread application in natural language processing, including machine translation, information retrieval, and dialogue systems. Manually-created lexicons focus on opposites, such as {\rm hot} and {\rm cold}. Opposites are of many kinds such as antipodals, complementaries, and gradable. However, existing lexicons often do not classify opposites into the different kinds. They also do not explicitly list word pairs that are not opposites but yet have some degree of contrast in meaning, such as {\rm warm} and {\rm cold} or {\rm tropical} and {\rm freezing}. We propose an automatic method to identify contrasting word pairs that is based on the hypothesis that if a pair of words, $A$ and $B$, are contrasting, then there is a pair of opposites, $C$ and $D$, such that $A$ and $C$ are strongly related and $B$ and $D$ are strongly related. (For example, there exists the pair of opposites {\rm hot} and {\rm cold} such that {\rm tropical} is related to {\rm hot,} and {\rm freezing} is related to {\rm cold}.) We will call this the contrast hypothesis. We begin with a large crowdsourcing experiment to determine the amount of human agreement on the concept of oppositeness and its different kinds. In the process, we flesh out key features of different kinds of opposites. We then present an automatic and empirical measure of lexical contrast that relies on the contrast hypothesis, corpus statistics, and the structure of a {\it Roget}-like thesaurus. We show that the proposed measure of lexical contrast obtains high precision and large coverage, outperforming existing methods.

Citations (104)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.