Variations of singular spectrum analysis for separability improvement: non-orthogonal decompositions of time series (1308.4022v2)
Abstract: Singular spectrum analysis (SSA) as a nonparametric tool for decomposition of an observed time series into sum of interpretable components such as trend, oscillations and noise is considered. The separability of these series components by SSA means the possibility of such decomposition. Two variations of SSA, which weaken the separability conditions, are proposed. Both proposed approaches consider inner products corresponding to oblique coordinate systems instead of the conventional Euclidean inner product. One of the approaches performs iterations to obtain separating inner products. The other method changes contributions of the components by involving the series derivative to avoid component mixing. Performance of the suggested methods is demonstrated on simulated and real-life data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.