Sequential Markov Chain Monte Carlo (1308.3861v1)
Abstract: We propose a sequential Markov chain Monte Carlo (SMCMC) algorithm to sample from a sequence of probability distributions, corresponding to posterior distributions at different times in on-line applications. SMCMC proceeds as in usual MCMC but with the stationary distribution updated appropriately each time new data arrive. SMCMC has advantages over sequential Monte Carlo (SMC) in avoiding particle degeneracy issues. We provide theoretical guarantees for the marginal convergence of SMCMC under various settings, including parametric and nonparametric models. The proposed approach is compared to competitors in a simulation study. We also consider an application to on-line nonparametric regression.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.