Papers
Topics
Authors
Recent
Search
2000 character limit reached

A family of linearisable recurrences with the Laurent property

Published 31 Jul 2013 in nlin.SI, math-ph, and math.MP | (1308.0200v1)

Abstract: We consider a family of nonlinear recurrences with the Laurent property. Although these recurrences are not generated by mutations in a cluster algebra, they fit within the broader framework of Laurent phenomenon algebras, as introduced recently by Lam and Pylyavskyy. Furthermore, each member of this family is shown to be linearisable in two different ways, in the sense that its iterates satisfy both a linear relation with constant coefficients and a linear relation with periodic coefficients. Associated monodromy matrices and first integrals are constructed, and the connection with the dressing chain for Schrodinger operators is also explained.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.