Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Travelling salesman-based variable density sampling (1307.6837v1)

Published 25 Jul 2013 in stat.AP

Abstract: Compressed sensing theory indicates that selecting a few measurements independently at random is a near optimal strategy to sense sparse or compressible signals. This is infeasible in practice for many acquisition devices that acquire sam- ples along continuous trajectories. Examples include magnetic resonance imaging (MRI), radio-interferometry, mobile-robot sampling, ... In this paper, we propose to generate continuous sampling trajectories by drawing a small set of measurements independently and joining them using a travelling salesman problem solver. Our contribution lies in the theoretical derivation of the appropriate probability density of the initial drawings. Preliminary simulation results show that this strategy is as efficient as independent drawings while being implementable on real acquisition systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.