Papers
Topics
Authors
Recent
2000 character limit reached

On construction and analysis of sparse random matrices and expander graphs with applications to compressed sensing (1307.6477v1)

Published 24 Jul 2013 in cs.IT and math.IT

Abstract: We revisit the probabilistic construction of sparse random matrices where each column has a fixed number of nonzeros whose row indices are drawn uniformly at random. These matrices have a one-to-one correspondence with the adjacency matrices of lossless expander graphs. We present tail bounds on the probability that the cardinality of the set of neighbors for these graphs will be less than the expected value. The bounds are derived through the analysis of collisions in unions of sets using a {\em dyadic splitting} technique. This analysis led to the derivation of better constants that allow for quantitative theorems on existence of lossless expander graphs and hence the sparse random matrices we consider and also quantitative compressed sensing sampling theorems when using sparse non mean-zero measurement matrices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.